bannerHON
img
HONnews
HONnews
img PATIENT / PARTICULIER img PROFESSIONNEL DE SANTE img WEBMESTRE img
img
 
img
HONcode sites
All Web sites
HONselect
News
Conferences
Images

Themes:
A B C D E F G H I
J K L M N O P Q
R S T U V W X Y Z
Browse archive:
2014: J J M A M F J
2013: D N O S A J

 
  Other news for:
Hereditary Diseases
 Resources from HONselect
Scientists Create 1st Living Organism From Artificial DNA
Third, unnatural DNA pair binds to bacterium in research hailed as breakthrough

By Alan Mozes

WEDNESDAY, May 7, 2014 (HealthDay News) -- Move over, Frankenstein! Your 21st-century counterpart has just been announced.

In true sci-fi fashion, a team of researchers from The Scripps Research Institute (TSRI) in La Jolla, Calif., has created a brand-new bacteria based on a genetic structure found nowhere on Earth.

According to lead researcher Floyd Romesberg, the feat involved artificially engineering a unique combination of DNA material -- a combination not found in any living creature -- and then successfully inserting it into a living cell that usually contains only natural combinations of DNA.

"Life on Earth in all its diversity is encoded by only two pairs of DNA bases, A-T and C-G," Romesberg explained in an institute news release. "And what we've made is an organism that stably contains those two plus a third, unnatural pair of bases."

"This shows that other solutions to storing [genetic] information are possible," he added, "and, of course, takes us closer to an expanded-DNA biology that will have many exciting applications -- from new medicines to new kinds of nanotechnology."

Romesberg and his colleagues discuss their handiwork -- funded in part by the U.S. National Institutes of Health -- in the May 7 online edition of Nature.

The product of more than 15 years of work, the current effort builds on a proof-of-concept study conducted in 2008. At that time, investigators had shown that hooking up natural and unnatural pairings of DNA was possible in a test-tube setting.

The next challenge was to replicate the process inside a living cell. The cell chosen by the TSRI team was the common E. coli bacterium, and into it they inserted what they considered to be the best unnatural DNA pairing they could construct: a combination of two molecules called "d5SICS" and "dNaM".

After leaping through a series of highly complex technical problems, the study authors finally managed to pull off their goal: the fashioning on a half-synthetic organism that could actually replicate its unnatural self as long as scientists continuously supplied it with the necessary molecular material.

Romesberg said that, in principle, his team's high-concept work has a very practical purpose: to gain a "greater power than ever" to fashion new treatments by harnessing the power of genetics.

More information

For more on DNA, visit the U.S. National Institutes of Health.

SOURCE: Scripps Research Institute, news release, May 7, 2014

Copyright © 2014 HealthDay. All rights reserved. URL:http://consumer.healthday.com/Article.asp?AID=687587

Resources from HONselect: HONselect is the HON's medical search engine. It retrieves scientific articles, images, conferences and web sites on the selected subject.
DNA
Research Personnel
Cells
Power (Psychology)
Lead
Therapeutics
The list of medical terms above are retrieved automatically from the article.

Disclaimer: The text presented on this page is not a substitute for professional medical advice. It is for your information only and may not represent your true individual medical situation. Do not hesitate to consult your healthcare provider if you have any questions or concerns. Do not use this information to diagnose or treat a health problem or disease without consulting a qualified healthcare professional.
Be advised that HealthDay articles are derived from various sources and may not reflect your own country regulations. The Health On the Net Foundation does not endorse opinions, products, or services that may appear in HealthDay articles.


Home img About us img MediaCorner img HON newsletter img Site map img Ethical policies img Contact